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Exact Stationary States of a Two-Dimensional
Transport Model
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Previous calculations of transport coefficients of particle systems in two or more
dimensions have used computer simulations or various approximations, like
those implicit in the Boltzmann equation or in the standard probability theory
of diffusion. Here an exactly solved model of crystal growth in three dimensions
is transformed into a 2D model of steady particle transport. Then the exact,
many-body stationary distribution and exact transport coefficients can be found
as well as correlation functions. The model is highly asymmetric. In the trans-
verse direction, particles are strongly attracted, so that long transverse rows of
particles tend to form at low temperature. Kinks in these rows are rare, so the
transverse positions of kinks effectively move continuously on a large distance
scale.

KEY WORDS: Transport coefficient; stationary distribution; steady-state
current.

1. INTRODUCTION

Simple particle transport models have many applications, including
granular flow, fast ionic conduction, flow of charged droplets in micro-
emulsions and transport in biological systems; Here we introduce a
2-dimensional particle transport model for which the exact stationary dis-
tribution can be found leading to a fairly complete description of steady
state transport in the model. It appears be the first example of such a solu-
tion where the particles have a 2-dimensional interaction, other than
coupled 1-dimensional diffusion processes.

The present model is partly motivated by difficulties with the much
studied driven lattice gas in 2-dimensions."*? In particular, it’s stationary
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distribution is unknown, i.e., there is no known equivalent of the Gibbs
distribution. Moreover, one can show, by the methods of ref. 3 that the
stationary distribution cannot be Gibbs-like. It is likely to be complicated,
and might never be obtained in explicit form. Some mathematical progress
has been made; e.g., the calculation of high-temperature perturbations
relative to the ideal (non-interacting) model.*¥ Low temperature analysis is
more difficult, because of the strong influence of particle interactions. We
shall give an argument suggesting that our new model is related to a lattice
gas in the limit of extreme anisotropy in the interactions, but be we do not
prove this rigorously.

The new model is mathematically equivalent to a solvable model of
3D crystal growth.® The purpose of this note is merely to point out this
analogy and give some formulae for the current. The reader may consult
results published elsewhere.

2. THE MODEL

The gas occupies a rectangular region of width L and integer height 2,
and flows in the upward direction. Configurations are defined via A con-
tours 1=1,2,.., A, as in Fig. la. Periodic (toroidal) boundary conditions
(PBC’s) apply in both directions. Thus contour A+ 1 is identified with
contour 1. The periodic image of contour A is shown as a broken line.
Contour /, has N, unit downkinks facing right at (real valued) locations
Vs Vi n, and N+ K unit upkinks facing left at locations xy,..., X; y, 4 k-
Contours do not touch; i.e., there is always at least unit vertical distance
separating two contours.

The gas itself is constructed by colouring (black) a strip of unit height
below each contour (Fig. 1b) representing the particles. Because of the unit
gap between contours, the black regions do not overlap, but they can touch.
The particles have zero width and form a continuum in the horizontal direc-
tion, as discussed below. One can see (Fig. 1) that there is a one-to-one
correspondence between the black and white patchwork and the contours (of
course, only those patchworks generated by contours are allowed). If K+#0,
the flow is, in effect, inclined relative to the vertical.

The configuration or state C of the process comprises these variables,
subject to 0<x; < -+ <x; . x<Land 0<y,< -+ <y, 5 <L for each
[, together with the vertical coordinates (4,..., { , of the contours on the left
hand border, subject to 1 <{; < --- <{,<Qand {,<{;+Q2—1.

Upward flow occurs via 3 types of transitions. A vertical black strip of
unit height and infinitesimal width (i.e., a particle) makes unit upward dis-
placement. There must have been a white space available for this to happen;
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Fig. 1. (a) Contours representing a configuration of the lattice gas, and (b) the corresponding
particle locations (black regions).

1.e., single occupancy of sites (SOS) is implied. In terms of contours, this
creates a unit vertical spike on top of a contour, which represents 2 coinci-
dent, opposite kinks. The spikes arrive as a Poisson process in time, and
are uniform along the allowed intervals of contours, with rate i spikes per
unit distance per unit time.

In the second type of transition, upkinks move with speed g to the left
and downkinks move with speed g to the right. These represent the vertical
displacement of particles that lie next to kinks. They evidently never violate
the SOS rule. Neighbouring kinks moving together and combining con-
stitutes a further transition. Upkinks that reach the left boundary reappear
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on the same contour at the right boundary, and downkinks that reach the
right boundary reappear on the same contour at the left boundary.

One can relate the model to a discrete particle lattice gas as follows.
Let M denote the number of particle sites across the rectangle. Particles are
strongly attracted in the horizontal direction but less so in the vertical
direction. Consequently particles tend to form long horizontal rows of
neighbours. Equivalently, transitions which break a row, occur at a low
rate: ref. 6 suggests a rate of order L/M as M — oo. Transitions which
merely shift a kink in a row by one horizontal step, occur at a high rate:
ref. 6 suggests a rate of order M/L as M — co. Then one views the model
on a horizontal scale that is large compared to L/M but small compared
to L, to obtain the continuum model. For a model with a single contour,
one can make this rigorous.(®

The model is equivalent to the crystal growth model described in
refs. 5 and 8. There, the contours are constant height contours of a 3D
surface.

3. STATIONARY STATES

Currently there does not exist an explicit statistical mechanics of the
non-equilibrium steady states of particle systems in more than one dimen-
sion. The problem has always been an inability to find appropriate station-
ary distributions analogous to the Gibbs distributions. By contrast, we
have an explicit stationary probability distribution of the new process,
Viz.

I(C)=Z"'y" (3.1)

where A/ =¥ | (2N,+ K) is the total number of kinks, 5 = (i/2g)"/% and
C is confined to contours consistent with the SOS constraints and PBC’s.
The partition function

Z(A,Q, LK, n)=Y n" (3.2)

C

involves integrations over the x, and y, and sums over the N,, {, and A"

Now that we have (3.1), an exact transport theory can be developed.
The steady vertical current, or mean coloured area crossing a unit horizon-
tal line in unit time, is evidently

oy

o (3.3)

g
[Q< > =gn
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where { ) denotes the mean with respect to 7I(C) and

1
w=mlog2 (3.4)

It is natural to identify —kTy as the free energy density. Pressure and
chemical potential may then be defined like their equilibrium counterparts.

One is mainly interested in the large system limit L, Q - oo with
A/ — A. The particle frequency in the horizontal direction does not appear
explicitly in the model, but if one nominates u particles per unit width of
black strip, then the particle density is Au. The current may then be
calculated via a free fermion method. If K remains finite in the large system
limit, its influence vanishes and® 7

J = Jy=(2ig)"? 1~V sin(n2) (3.5)

If i=0, and K/L — x, then no new kinks are created, leading to the obvious
formula®

J— grch (3.6)
For K/L — x in general®
J - [J5+(gxh)?]2 (3.7)

Correlation functions and other quantities can also be calculated.’® The
crystal “facets” described in ref. 9 now take the form of separate phases
forming horizontal bands across the region.
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